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Abstract

In this paper, an energy management strategy based on deep reinforcement learning is proposed for a hybrid
battery system, which consists of a high-energy and a high-power battery pack, in electric vehicles. The
energy management strategy of the hybrid battery system was developed on the basis of electrical and
thermal characterization of the battery cells, aiming at minimizing the energy loss and increasing both the
electrical and thermal safety level of the whole system. Especially, we designed a novel reward term to
explore the optimal operating range of the high-power pack without imposing a rigid constraint of state of
charge. Furthermore, various load profiles were randomly combined to train the deep Q-learning model,
which avoided the overfitting problem. The training and validation results showed both the effectiveness
and the reliability of the proposed strategy in loss reduction and safety enhancement. The proposed energy
management strategy has demonstrated its superiority over the reinforcement learning-based methods in
both computation time and energy loss reduction of the hybrid battery system, highlighting the use of such
method in future energy management systems.

Keywords: lithium-ion battery, hybrid battery system, reinforcement learning, deep Q-learning, energy

management, electric vehicle

1. Introduction

The development of battery electric vehicles (BEVs) has drawn considerable attention in the past decades

under the consideration of fossil resource depletion and climate change. With zero driving emission, high
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Nomenclature

C heat capacity List of abbreviations

Cn battery nominal capacity BEV battery electric vehicles

Ci,2 battery polarization capacitances CcP convex programming

E expected value DNN deep neural network

L mean squared time difference error DP dynamic programming

Py total power at time t DQL deep Q-learning

Q Q value ECM equivalent circuit model

Q" optimal Q value ECMS equivalent consumption minimization strategy
R total reward EMS energy management system

Ro battery ohmic resistance FTP federal test procedure

Ry battery polarization resistances HBS hybrid battery system

T battery average temperature HE high-energy

Via battery polarization voltages HP high-power

a weighting factors LMO lithium-manganese-oxide

Q heat generation rate LTO lithium-titanate-oxide

n coulomb efficiency MPC model predictive control

¥ discount factor NCA lithium-nickel-cobalt-aluminum-oxide
0 network weights NEDC new european driving cycle

I3 learning rate ocv open circuit voltage

ag action at time t QL Q-learning

h heat transfer coefficient ReLU  rectified linear unit

T immediate reward at time ¢ RL reinforcement learning

St state at time ¢ SBS single battery system

t time SoC state of charge

vy vehicle velocity at time ¢ WLTC worldwide harmonized light vehicles test cycles

powertrain efficiency and integration possibility of renewable energies, BEV is one of the most environ-
mentally friendly vehicles compared with the traditional internal combustion engine vehicles. However,
challenges are still existing for the design and operation of battery systems in BEVs to further reduce the
cost and increase the performance and lifetime. On the one hand, the size of the battery system in BEVs
should not be oversized, considering the cost and system efficiency. On the other hand, the requirements
of both energy and power capability of the battery system should be satisfied under all possible situations,
especially in operating conditions with low temperatures and extreme state of charge (SoC) [1].

In order to overcome the challenges mentioned above, the hybridization of the energy source has been
considered widely in the literature. Hybrid energy storage systems usually combine a high energy density
storage technology with a high power density storage technology via power electronics. Different storage
technologies, such as super-capacitors [2], have been used to cover the requirement of power capability
in the hybrid energy storage system. Although super-capacitors show high efficiency, high cycle life and
high power density even at low temperatures, several drawbacks, e.g., low energy density and high cost-per-
energy, still exist. With the appearance of high power lithium-ion batteries on the market, e.g., batteries with
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lithium-titanate-oxide (LTO) anode [3], hybrid battery systems (HBSs) attract more and more attention from
industry [1, 4, 5]. Compared with a graphite anode, LTO offers higher cycle lifetime, better thermal stability
and higher charging and discharging current without lithium-plating and the formation of a passivating solid
electrolyte interface layer due to the high lithium-titanate potential (1.55 V) vs. Li. Compared with the
single battery pack topology, HBSs can balance the power and energy demand of the BEVs, which makes
the scalability of the entire system possible. As a result, lower volume and less weight can be achieved [4].
However, the effective operation of the HBS relies on an energy management system (EMS), which controls
the power distribution between the high-energy (HE) and high-power (HP) battery packs.

A large number of energy management strategies have been proposed in the literature [6] and can be
roughly divided into three categories: rule-based, optimization-based, and learning-based methods. The rule-
based EMS, e.g., thermostatic strategy [7, 8] and fuzzy logic [9], is usually based on heuristic operation rules
and achieved success in the automotive industry because of its simplicity, ease of real-time implementation
and high reliability. Nonetheless, the performance of rule-based methods depends significantly on the specific
knowledge of an expert as well as on the extensive experimental dataset. The performance of these rules
is also far from optimality considering different control objectives. Therefore, rule-based EMS can only be
used for specific driving conditions.

The optimization-based methods, e.g., particle swarm optimization [10], equivalent consumption min-
imization strategy (ECMS) [11-13], dynamic programming (DP) [5, 14, 15] and model predictive control
(MPC) [16], are applied to EMSs on the basis of the fixed driving cycles or predicted driving conditions in
the future. The overarching goal of this method is the optimization of one or multiple predefined objective
values under consideration of system constraints. Yang et al. [11] proposed an ECMS-based EMS to control
the power allocation between the fuel cell and the battery for a plug-in hybrid electric bus with adaptive
equivalent factors. Through the instantaneous minimization of the cost index, the local optimization prob-
lem can be solved. In Ref. [17], the DP-based EMS was applied to achieve optimal control within a hybrid
energy storage system. Peng et al. [18] developed a parallel DP-based algorithm based on the matrix calcu-
lation as the EMS for a fuel cell and battery hybrid train. However, the future driving information is usually
needed in advance, which limits the application of the DP-based EMS to the offline benchmark for the eval-
uation of other methods. Although the stochastic DP is proven effective in an online implementation [1],
an additional Markov transition model for vehicle velocity and power demand is required, which affects the
performance of the trained EMS. Another optimization-based method, convex programming (CP), was also
explored in Ref. [19, 20] for energy management in hybrid electric vehicles and multi-motor-driven electric
vehicles. CP offers a faster calculation due to the convexity with the degradation in optimality compared
with DP. To explore the online optimization-based energy management, MPC was adopted in [16] for the
design of a strategy with an explicit consciousness of degradation of both battery and fuel cell in hybrid

electric vehicles.



State-of-the-art learning-based methods, e.g., reinforcement learning (RL), are becoming one of the
most popular methodologies for model-free and real-time energy management [21]. They can learn from
the historical experiences and adapt the strategy gradually by maximizing the estimated total reward. The
main difference between DP- and RL-based algorithms is that the latter doesn’t assume the knowledge of an
exact mathematical model of the Markov decision process. With the revolution of the battery management
systems with cloud computing and the internet of things, battery relevant data can be measured and
transmitted to the cloud seamlessly [22, 23], where learning-based energy management approaches will show
significant advantages over the other methods facing with a large amount of operation data. As a typical RL
method, Q-learning (QL) is then introduced to solve the energy management problem, in which a Q-table
is implemented to store the action values (Q values) of all possible state-action combinations. Biswas et al.
[24] proved that the QL-based EMS can achieve a near-global optimal control for the electrified powertrain.
Xiong et al. [25] introduced a QL-based EMS for a hybrid energy storage system containing a battery
pack and a super-capacitor. Although this EMS can reduce the total energy loss compared with rule-based
methods, its performance is dependent on the discretization of both the environmental states and the action
space. The training is discounted drastically with the dimension buildup of state and action space, i.e., the
strategy suffers from the so-called “curse of dimensionality.” Compared with QL, the deep Q-learning (DQL)
uses multi-layer neural networks to approximate the Q-matrix, enabling an obvious improvement towards
the continuous state space. Hence, the DQL outperforms the QL for solving the optimization problem with
multidimensional states [26-30]. Attributed to its superior performance, the DQL has gained great success
in various areas such as PC games, autonomous driving, and robotic control [31-34]. Recently, the DQL
was employed for the energy management of electric vehicles, achieving satisfying performance concerning
the minimization of the fuel economy for plug-in hybrid electric vehicles [26, 35-37] and for hybrid electric
vehicles [27, 38]. In Ref. [39], a DQL-based EMS minimized the electricity consumption within a hybrid
energy storage system consisting of a battery pack and a super-capacitor.

To the best knowledge of the authors, no efforts have been made to develop a learning-based energy
management strategy for HBSs in BEVs. The present work aims to bridge the aforementioned research gap

by integrating the following main contributions:

e Development of a DQL-based energy management strategy for HBSs in BEVs with the perspective of

energy loss minimization and electrical and thermal safety enhancement.

e Novel design of a reward function for the automatic determination of the optimal operating range of

the HP battery pack considering the power demand and power distribution in the HBS.

e Development and parameterization of a coupled electro-thermal battery model with characterization

tests to simulate the electrical and thermal dynamics of both HE and HP battery cells.



Additionally, this work extends the existing research with the following secondary contributions:

e Design of a new training scenario to restrain the overfitting problem by combining different driving

conditions randomly in each epoch to simulate the uncertainty of the driving conditions.

e Validation of the proposed DQL-based energy management strategy with new driving conditions and
comparative study with a QL-based strategy for the same system, highlighting the superiority of the

proposed method in both computation and performance.

2. Hybrid battery system model

The energy source of the BEVs on the market is generally composed of a single battery type. Its energy
and power capability relies on the specific cell type, which usually leads to an oversizing of the battery
system. Using a hybrid system with different battery types offers the possibility to fulfill the power and

energy requirements of BEVs more efficiently.

2.1. Electric vehicle and HBS modeling

The BEV model with an HBS was developed in our previous work, which includes two electric motors, a
high voltage DC-DC converter, two traction inverters, and a battery system. Each axle is propelled by one
electric motor, resulting in an all-wheel-drive configuration. Considering the balance between the system
flexibility and cost, we implement one DC-DC converter in the HBS, as shown in Fig. 1. The HE battery
pack is connected directly to the DC-link. The modeled DC-DC converter between the HP battery pack
and the DC-link is Brusa BDC546, whose energy loss is modeled with a second-order polynomial based on

input current [17] as follows,
Qpc-_pc = 1.56 x 107 2T _pe — 1.441pc_pe + 388.90 (1)

where Qpc—pc and Ipc—pc are the energy loss and current of the DC-DC converter, respectively. The

readers are referred to [40] for modeling details of the BEV.

2.2. Battery modeling and parameterization

In this work, both HE and HP battery packs are constructed with battery cells of a single battery type
but different electrode material compositions. The HE battery pack is supposed to support the base load of
the BEV, while the HP battery pack serves as an additional power source to fulfill the dynamic load. The HE
battery pack and HP battery pack are composed of 4.9 Ah HE cells and 2.9 Ah HP cells, respectively. The
HE cells with lithium-nickel-cobalt-aluminum-oxide (NCA) and graphite as electrode materials have a very
high energy density but limited power capability. In contrast, the HP cells with lithium-manganese-oxide
(LMO) and LTO as the cathode and anode materials are characterized by the high power density but low
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Figure 1: The topology of the HBS for the BEV.

energy density. The specifications of the battery cells and the configuration of the HBS are adopted from

[5] and summarized in Table 1.

HE cell HP cell
Chemistry (Anode / Cathode) C / NCA LTO / LMO
Cell nominal capacity 4.9 Ah 2.9 Ah
Cell nominal voltage 3.6V 24V
Cell voltage limits (min / max) 25V /42V 1.5V /29V
Cell current limits (DCH / CHA) 2C/1C 70C /70 C
Energy density 250 Wh/kg 45 Wh/kg
Power density (10 s, DCH / CHA) 1.3 kW/ke / 32 kW/ke /
0.5 kW /kg 3.2 kW /kg
Cell weight 69 g 150 g
Pack configuration 90s 16p 90s 3p
Pack energy 25.4 kWh 1.9 kWh

Table 1: Specifications of the HBS.

2.2.1. Equivalent circuit model

With the assumption that the battery cells in each pack are the same and are working in the same condi-
tions, two equivalent circuit models (ECMs) are developed and parameterized with experiments conducted
on HE and HP battery cells, respectively. Compared with electrochemical models [41, 42], ECMs [43-46]
offer the benefits in computing speed due to the simple model structure, which further reduces the training
time and improves the training efficiency of the proposed DQL-based energy management strategy. Con-
sidering the trade-off between model accuracy and computational burden, we chose an extended Thevenin
model with two RC pairs to simulate the dynamics of battery cells. The model contains the open-circuit
voltage (OCV), which has a nonlinear relationship with the state of charge (SoC), as the voltage source,

ohmic resistance Ry, polarization resistances R; o and polarization capacitances C 2, as shown in Fig. 2.
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Figure 2: Extended Thevenin model of the battery cells.
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Figure 3: Pulse tests of the HE cell at 25 °C.

The model is described as follows:

. . n
S6C(t) = ZH1(1) 2)
. 1 1
Vi(t) = TR Vi(t) + C_ll(t) (3)
. 1 1
Va(t) = Tl Va(t) + C_Ql(t) (4)
Vi(t) = OCV(SoC (1)) + Vi (t) + Va(t) + Rl (t) (5)

where I(t) and Vi(t) are the current and terminal voltage, respectively, n is the coulomb efficiency, Cx
represents the nominal capacity of the battery cell, Vi (t) and Va(t) are voltages over Ry and Ra, respectively.

To get the accurate parameters of the ECM, we carried out a capacity test at first to determine the cell
capacity. The OCV was determined by measuring the terminal voltage of a fully relaxed cell at different
SoCs. Then pulse tests were performed under different conditions from 100% to 0% SoC with 10% intervals
at five different C-rates and temperatures, as shown in Fig. 3. The detailed specifications of the pulse tests

are summarized in Table 2.



